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Abstract
We exploit rotational-symmetry breaking in the one-body density to examine the formation of
structures in systems of N strongly coupled charged bosons with logarithmic repulsions inside
isotropic two-dimensional harmonic traps, with N in the range from 2 to 7. The results serve as
a map for ordered arrangements of vortices in a trapped Bose–Einstein condensate. Two types
of N-body wavefunctions are assumed: (i) a permanent |ψWM〉 of N identical Gaussian orbitals
centred at variationally determined sites, and (ii) a permanent |ψSM〉 of N orthogonal orbitals
built from harmonic-oscillator energy eigenstates. With increasing coupling strength, the
bosons in the |ψWM〉 orbitals localize into polygonal-ringlike crystalline patterns (‘Wigner
molecules’), whereas the wavefunctions |ψSM〉 describe low energy excited states containing
delocalized bosons as in supersolid crystallites (‘supermolecules’). For N = 2 at strong
coupling both states describe a Wigner dimer.

1. Introduction

Interest in a two-dimensional (2D) fluid of charged bosons
was greatly stimulated by the work of Nelson and Seung [1],
who showed that a fluid of flux lines in strongly type-II
superconducting materials can be mapped onto this model
system in statistical mechanics. The interaction potential law
is given by V (r) = V K0(r/r0), with V a coupling-strength
parameter and K0(x) the modified Bessel function behaving
as − ln(x) at short distances. Following an early variational
Monte Carlo study [2], the transition between an Abrikosov
lattice and a homogeneous liquid of vortices was studied
within this mapping by means of the dislocation mechanism
of melting [3] and the density functional theory of freezing [4].
A first-order transition from an Abrikosov lattice to a bosonic
superfluid of entangled vortices has also been demonstrated
by the path-integral Monte Carlo method [5]. A triangular
Abrikosov lattice is, of course, equivalent to the Wigner lattice
for a 2D Coulomb system.

More recently, vortices have been created and extensively
studied by a variety of experimental techniques [6, 7] in atomic
Bose–Einstein condensates confined inside harmonic traps. A

vortex created at the centre of a stationary trap corresponds to
a maximum of the energy functional and will tend to spiral
out of the trap in a finite time [8], but the vortex state can be
stabilized by setting the trap into rotation. Upon stirring the
condensate at increasing frequency first one vortex and then
several vortices are observed to enter the condensate, and such
vortex assemblies ultimately form an ordered pattern. These
arrangements of vortex lines closely resemble a triangular
crystallite almost up to the condensate boundary, even though
the gas is subject to the external trapping potential and is
therefore inhomogeneous.

In the present work we report theoretical calculations of
the structures taken by such arrangements of a small number
of vortices. It has been amply demonstrated, by work both
on strongly interacting electrons in 2D semiconductor quantum
dots [9] and on strongly coupled bosons interacting by either a
contact potential or the e2/r Coulomb law inside 2D harmonic
traps [10], that information on the structure of few-particle
crystallites can be obtained directly from the one-body density
by means of calculations based on the unrestricted Hartree–
Fock method, which breaks the rotational symmetry imposed
by circular confinement. More generally, an approximate
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treatment of a strongly correlated many-body system can in
principle lead to states with spontaneously broken rotational
symmetry, as discussed for instance by Ring and Schuck [11]
and by Reimann and Manninen [12].

In this work we use this very simple theoretical method
to evaluate the structure of small crystallites of vortex lines
within the Nelson–Seung mapping, by means of self-consistent
variational calculations on harmonically trapped bosons with
logarithmic interactions using a permanent wavefunction
approximation. We consider, in fact, two different types of
variational wavefunctions. Whereas the first yields structures
that are well known in the literature as ‘Wigner molecules’,
in which the particles are localized within polygonal-ringlike
arrangements acting as nuclei for a Wigner crystal, the second
type of wavefunction allows for delocalization of the bosons
and yields what may be called a ‘supermolecule’ as the seed
for a supersolid. A supersolid [13] is a quantum crystal
that exhibits a non-classical moment of inertia, i.e. a type of
superfluid response. Interest in this predicted state of quantum
matter has been recently revived by reports on the observation
of superflow in solid helium inside Vycor [14].

The contents of the paper are briefly described as follows.
In section 2 we introduce the model Hamiltonian and the
essential formalism for its solution within a self-consistent
variational approximation, leading to numerical calculations of
vortex structures that are presented and discussed in section 3.
Finally, in section 4 we summarize our main conclusions. We
refer at this point to recent calculations on the structure and
spectrum of classical 2D clusters with a logarithmic interaction
potential [15] and on ordered structures formed in rotating
ultracold Bose gases [16], as an introduction to a broader view
of the field.

2. Formalism

We consider a 2D system of N bosons described by the
Hamiltonian

Ĥ =
∫

drψ†(r)Ĥ0ψ(r)+ 1
2

∫
dr dr′ψ†(r)ψ†(r′)

× V (|r − r′|)ψ(r′)ψ(r) (1)

where ψ(r) and ψ†(r) are the field operators, Ĥ0 =
p2/(2m) + mω2r 2/2 is the single-particle Hamiltonian with
m the particle mass, ω is the trap frequency and V (r) is the
interparticle repulsive potential taken as the solution of the 2D
Poisson equation, V (r) = −V ln(r/r0), involving a coupling-
strength parameter V and an irrelevant length r0. In our
variational formulation we consider the N-body wavefunction
|ψ〉 that is taken as the totally symmetric product, i.e. the
permanent

ψ(r1, . . . , rN ) = 1

N !
N !∑

p=1

φp(1)(r1)φp(2)(r2) . . . φp(N)(rN )

(2)

where φi(r) are single-particle orbitals and the sum runs over
all permutations p of indices 1 to N . The energy can be thus

written as

E = 〈ψ|Ĥ |ψ〉/〈ψ|ψ〉

= 1

N !
N !∑

p1,p2=1

[(
N

1

)
H0,p1(1)p2(1)

N∏
i=2

Sp1(i)p2(i)

+
(

N

2

)
Vp1(1)p1(2)p2(1)p2(2)

N∏
i=3

Sp1(i)p2(i)

]

×
[ N !∑

p1=1

N∏
i=1

Sp1(i)i

]−1

(3)

where the matrix elements are given by

H0,ii =
∫

dr φ∗
i (r)Ĥ0 φi(r)

Vi jkl =
∫

dr dr′ φ∗
i (r)φ

∗
j (r

′)V (|r − r′|)φk(r
′)φl(r),

(4)

and the overlap matrix reads

Si j =
∫

dr φi(r)
∗φ j (r). (5)

The energy E in (3) is written to within an irrelevant additive
constant and will be given below in units of h̄ω. Scaling of
distances by the harmonic-oscillator length �0 = √

h̄/(mω)
will also be used.

We introduce at this point two different types of N-body
wavefunctions according to the choice of the single-particle
orbitals φi (r).

2.1. Wigner molecules

The state |ψWM〉 is written as a permanent one of N Gaussian
orbitals having the same width σ and centred at positions ai :

φi(r) = 1√
πσ

exp
[−(r − ai )

2/(2σ 2)
]
. (6)

The parameters σ and ai will be determined by minimizing the
total energy E for fixed number of particles and allowing the
orbitals to overlap. In the limit V = 0 we find ai = 0 for
all i , i.e. we recover a condensate state |ψBEC〉 in which the N
bosons occupy the same Gaussian orbital and create a density
peak at the centre of the trap [17].

In our calculations we find that this type of N-particle
wavefunction is the lowest-energy state for the N-boson
system, owing to the optimization of the overlap between the
various orbitals as their peaks move away from the trap centre
with increasing repulsive coupling. In fact, the contributions to
the total energy coming from the inter-orbital overlaps rapidly
decrease as the coupling increases, and become negligible
for V > 4h̄ω, for example. The intra-orbital overlap still
continues to decrease through a slow broadening of the single-
particle density associated with each Gaussian peak. As we
shall see, this leads to a decrease of the total energy E with
increasing V at strong coupling.
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Figure 1. Total energy E (in units of h̄ω) as a function of V/(h̄ω)
for N = 2 bosons interacting via a logarithmic potential law inside
an isotropic two-dimensional harmonic well, as calculated by the
unrestricted Bose–Hartree–Fock approximation for the states |ψBEC〉
(circles), and |ψSM〉 (triangles) and the Gaussian approximation for
|ψWM〉 (squares).

Figure 2. Same as in figure 1, but for N = 4 bosons.

2.2. Supermolecules

The state |ψSM〉 is built as a permanent of N orthogo-
nal orbitals, which corresponds to the unrestricted Bose–
Hartree–Fock (UBHF) approximation for the N-body wave-
function [18]. In this case, the energy equation (3) reduces to

E =
∑

i

ni H0,i i + 1
2

∑
i, j

ni n j (Vi ji j + Vi j j i)

− 1
2

∑
i

ni (ni + 1)Viiii (7)

where ni are the orbital occupation numbers.

In our calculations we take ni = 1 for the N orbitals of
lowest energy and express the single-particle orbitals through
expansions in an orthonormal basis {ϕn} provided by the

Figure 3. Same as in figure 1, but for N = 6 bosons. The energy
difference between the (0, 6) and (1, 5) configurations in states of the
|ψWM〉 type cannot be seen on this energy scale.

eigenstates of the harmonic oscillator. That is, we write

φi(r) =
∑

n

Ci,nϕn(r). (8)

The expansion parameters Ci,n are the variational parameters
subject to the normalization and orthogonality conditions. In
practice, for numerical reasons we have had to limit the
expansion in equation (8) to a maximum of 120 harmonic-
oscillator eigenstates, corresponding to 14 oscillator energy
levels. We have checked for N = 6 at strong coupling that
restricting the expansion to include only six oscillator levels
yields a topologically identical density profile.

The form (8) for the orbitals allows the formation of more
elaborated structures than the Gaussian ansatz used in the
previous section. Indeed, we show below that some of the
orbitals may delocalize for strong interactions giving rise to
what we have termed a supermolecule.

3. Results and discussion

Figures 1–3 report plots of the total energy E of various states
in the self-consistent variational approximation, as a function
of the coupling V/(h̄ω) for N = 2, 4 and 6, respectively
(entirely similar plots are obtained in the cases N = 3 and
5). Figures 4–6 illustrate instead the density profiles associated
with some of these states in the strong-coupling case V = 4h̄ω.
The left-hand panels in figures 4–6 refer to a state of the type
|ψWM〉, whereas the right-hand panels refer to states of the type
|ψSM〉.

As anticipated, the state |ψWM〉 always corresponds to
the lowest total energy: it reduces to the state |ψBEC〉 in
the limit V = 0, and decreases with increasing V for
N � 3 at strong coupling. The energy of the state |ψBEC〉
is instead continuously increasing with V , thus indicating
that condensation becomes progressively unfavoured. The
wavefunction ψSM describes an excited state at all values of
the coupling for N � 3, but its energy soon crosses the energy
of the condensed state |ψBEC〉 and ultimately bends over with
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Figure 4. Density profile (in arbitrary units) at V = 4h̄ω as a function of position in the (x, y) plane (in units of the harmonic-oscillator
length �0 = √

h̄/(mω) and with the origin taken at the centre of the well) for N = 2 bosons interacting via a logarithmic potential law inside
an isotropic two-dimensional harmonic well, as calculated by the Gaussian approximation in the state |ψWM〉 (left panel) and the unrestricted
Bose–Hartree–Fock in the state |ψSM〉 (right panel).

Figure 5. Same as in figure 4, but for N = 4 bosons.

Figure 6. Same as in figure 4, but for N = 6 bosons and showing the density profile of the (0, 6) configuration in the left panel.

increasing V . We have checked that these trends continue over
a range of coupling strength about double that illustrated in the
figures. Due to the possibility of overlapping orbitals, this form
of the wavefunction correctly describes the crossover from the
|ψBEC〉 to the |ψWM〉 state.

In more detail, we see from figure 1 that the states |ψWM〉
and |ψSM〉 attain the same total energy for N = 2 at strong
coupling, within the inaccuracies of our calculations that are
due on one hand to the use of a Gaussian approximation and on
the other to a truncated-basis expansion. As is seen from the
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density profiles reported in figure 4 for V = 4h̄ω, both states
describe a Wigner dimer—although the details of the density
distributions associated with these two wavefunctions appear
to be somewhat different.

In the case N = 6 we have actually found two
different Wigner-molecule states that lie at very nearly the
same energy over the range of coupling covered in figure 3.
These correspond to different configurations of the density
distribution, which are (i) a (0, 6) configuration consisting of
six peaks located at the corners of a hexagon, and (ii) a (1, 5)
configuration consisting of a central peak surrounded by five
peaks located at the corners of a pentagon. In the left-hand
panel in figure 6 we show the density profile of the (0, 6) state,
which is slightly deeper in energy at V = 4h̄ω. For increasing
V the energy curves of the (1, 5) and (0, 6) configurations
clearly separate, showing that at strong coupling the lower
energy state still corresponds to the (0, 6) configuration. This
is in contrast to what has been found by Romanovsky et al
[10] for the 1/r potential for which the transition from a single
polygon to a polygon with a central peak already occurs for six
particles. For the logarithmic interaction potential the second
configuration is favoured for N = 7, where the density profile
consists of a central peak surrounded by six peaks at the corners
of a hexagon. This difference can be attributed to the relative
weakness of the logarithmic potential as compared to the 1/r
one, which in turn allows for more particles to be arranged on
a single ring.

Comparison between the left-hand and right-hand panels
in figures 5 and 6 illustrates the difference between Wigner
molecules and supermolecules. Whereas in a Wigner molecule
the bosons are localized into polygonal-ringlike crystalline
patterns, in a supermolecule they are at least partly delocalized
within an ordered pattern by being allowed to move in
a correlated fashion between a higher multiplicity of sites
including ‘interstitial’ sites. For a supermolecule made of
N = 3 and 5 bosons (not shown), we find, respectively, four
and seven peaks in the density profile. For the case N = 6 we
have checked that the topology of the profile associated with
the state |ψSM〉 persists up to V = 10h̄ω. Finally, the state
|ψSM〉 yields 10 density peaks for N = 7.

4. Conclusions

In summary, we have used the Nelson–Seung mapping and
the permanent wavefunction approximation to illustrate the
ordered patterns that may be formed by an assembly of a
limited number of vortices in a superfluid. In the lowest-
energy state the vortices are localized at the sites of a
polygonal-ringlike crystallite, which can act as a seed for the
formation of a triangular Abrikosov lattice as is observed in
numerous experiments on trapped Bose–Einstein condensates
of ultracold bosonic atoms. Our results for these arrangements
of bosons interacting with a logarithmic potential law inside
a 2D harmonic well are analogous to those reported by
Romanovsky et al [10] for bosons interacting with other types
of force laws, except for six particles which we find to be
arranged in an hexagon instead of a (1, 5) configuration as
a result of the more realistic logarithmic potential. We have

also shown, however, that at slightly higher energy the vortices
can form a second type of ordered pattern, in which they
can move in a correlated fashion on a variety of regular sites
having different values of the average occupation number.
Such ‘supermolecules’ could be viewed as being the seeds for
a supersolid.

As a final comment, we should explicitly point out that
the rotational symmetry imposed by an isotropic trap on the
one-body density will be restored in a more refined treatment
of these systems. Theoretical methods using projection
techniques to transcend the symmetry-breaking Hartree–Fock
approximation have been proposed and applied by Yannouleas
and Landman [19, 10], and from their results we can expect that
the energy of the various ordered patterns will drop—possibly
decreasing or even cancelling out the energy difference
between the two types of states that we have assumed in
the permanent approximation when each set of radial peaks
goes into a circular annulus. However, we feel that such a
refinement lies outside the main thrust of our work. In a refined
theory the formation of ordered patterns would then have to
be revealed by means of much heavier calculations concerning
two-body and higher correlation functions. Developments in
this direction have so far been limited to instantaneous pair
correlations [20].
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